Трудности теории бора

Теория Бора с самого начала вызывала многие вопросы, остававшиеся без ответа. Эти вопросы были поставлены Резерфордом еще при обсуждении рукописи его первой статьи. Как понимать сочетание идей Бора и классической механики, в которой нет места для квантовых скачков, и откуда электрон знает, на какую орбиту ему следует перескакивать?

В 1896 г. голландский физик Питер Зееман (1865—1943) произвел опыт, который пытался осуществить еще Фарадей. Пламя натриевой горелки он помещал между полюсами электромагнита и наблюдал в спектроскоп ее спектр. По оси электромагнита был просверлен канал, так что явление можно было наблюдать не только перпендикулярно силовым линиям поля (поперечный эффект), но и вдоль поля (продольный эффект). При наблюдении поперек поля, кроме линии с частотой колебаний vo , равной частоте колебаний в отсутствие поля, наблюдались две линии с частотами v 1 = v 0 - D v и v 2 = v 0 - D v . Все три линии линейно поляризованы. Несмещенная линия соответствует колебаниям вдоль силовых линий, смещенные — колебаниям, перпендикулярным силовым линиям. При наблюдении вдоль поля несмещенная компонента отсутствует, смещенные линии поляризованы по кругу в противоположных направлениях.

Лоренц в 1897 г. дал простую теорию эффекта, исходя из представлений, что в атомах электроны совершают круговые движения с циклической частотой w 0 . В магнитном поле на них действует сила Лоренца и частота обращения изменяется на величину D w , равную приближенно:

Лармор (1857-1942) в 1899 г. интерпретировал действие магнитного поля как действие поля тяжести на волчок. Волчок прецессирует вокруг направления силы тяжести с угловой частотой D w . Точно так же вращающиеся электроны в атоме прецессируют вокруг силовых линий магнитного поля с круговой частотой .

Зоммерфельд, развивая теорию Бора, ввел идею пространственного квантования. Движение электрона по орбите определяется радиальным и азимутальным квантовыми числами или главным квантовым числом п, определяющим энергию электрона, и побочным квантовым числом k , определяющим форму орбиты. Положение орбиты в пространстве определяется третьим магнитным квантовым числом т. Введение этого числа и квантование направлений оси по отношению к магнитному полю позволяет дать объяснение эффекта Зеемана. Однако это объяснение в известном смысле было хуже объяснения, данного Лоренцем. Оно ничего не говорило о поляризации линий. Вообще теория спектров, по Бору и Зоммерфельду, говорила лишь о частотах линий и не могла объяснить их интенсивность и поляризацию. Чтобы теория могла что-то сказать об этом, Бор ввел принцип соответствия.

Согласно этому принципу «существует далеко идущее соответствие» между квантовым и классическим описанием излучения. В квантовом описании линии спектра излучения обусловлены переходами из одного состояния в другое, в классическом эти линии определяются разложением движения электрона в ряд Фурье. При этом, как указывает Н. Бор, «частота излучения, испускаемого при переходе между стационарными состояниями, характеризуемыми числами п' и п" , большим по сравнению с их разностью, совпадает с частотой одной из компонент излучения, которую можно ожидать при избранном движении электрона в стационарном состоянии на основании обычных представлений. Далее Бор пишет: «Задаваясь вопросом о более глубоком значении найденного соответствия, мы вправе, естественно, ожидать, что соответствие не ограничивается совпадением частот спектральных линий, вычисленных тем и другим методом, но простирается и на их интенсивности. Такое ожидание равносильно тому, что вероятность определенного перехода между двумя стационарными состояниями связана известным образом с амплитудой, соответствующей гармонической компоненте».

Применение принципа соответствия позволило определить и поляризацию в нормальном эффекте Зеемана. Квантовый переход, соответствующий изменению магнитного квантового числа на ± 1, дает круговую поляризацию в плоскости, перпендикулярной к силовым линиям. Квантовый переход Am = 0 соответствует линейной поляризации, параллельной силовым линиям.

Но нормальный эффект Зеемана представляет скорее исключение, чем норму. На опыте встречается более сложный эффект: расчленение на несколько компонентов (мультиплетов). Мультиплетами оказываются и линии спектров элементов. Аномальный эффект и мультиплетная структура спектров не укладывались в рамки обычной теории Бора.

С вопросом о сложной структуре линий был тесно связан вопрос о магнитных свойствах атома. Еще Д. С. Рождественский в своем докладе 15 декабря 1919 г. предполагал, что дублеты п триплеты спектральных линий обусловлены действием магнитных сил, вы званных движением электронов. «Магнитная задача должна лежать в основе задачи об атомах»,—говорил Рождественский.

О.Штерн (1888-1969) и В. Герлах (род. в 1889 г.) в 1921 г. пропустили молекулярный пучок через неоднородное магнитное поле и неопровержимо доказали наличие у атомов магнитного момента. Но детали опыта (расщепление пучка на два) опять не укладывались в теорию Бора — Зоммерфельда.

В том же, 1921 г. А.Ланде (1888-1975) дал формальную схему описания мультиплетов с помощью векторной модели и ввел связанный с квантовыми числами k и s множитель Ланде. Он также получил «двойной магнетизм»: отношение между магнитным и вращательным моментом атомного остова (т.е. ядра и всех электронов, кроме оптического) оказалось вдвое больше того, который следует из теории Бора — Зоммерфельда. Противоречия с теорией Бора в ее первоначальном варианте накапливались на каждом шагу, и квантовое описание спектроскопических фактов все более и более усложнялось.

Особенно тягостное положение создалось в теории света. Эйнштейн в своей классической работе 1917 г. о световых квантах сделал дальнейший шаг в сторону корпускулярной теории света. Он предположил, что атом излучает, «выстреливая» квант света в том или ином направлении (игольчатое излучение). При этом квант света обладает всеми свойствами материальной частицы: энергией Е = hv , массой m .

Эта идея нашла блестящее подтверждение в открытии, сделанном американским физиком Артуром Комптоном. В 1922 г. Комптон , изучая рассеяние рентгеновских лучей веществом, содержащим слабо связанные электроны (графитом), установил, что частота (длина волны) рассеянных рентгеновских лучей изменяется в зависимости от угла рассеяния. С увеличением угла рассеяния она уменьшается (длина волны увеличивается), излучение становится более «мягким».

В 1923 г. А. Комптон и независимо от него П.Дебай дали теорию «эффекта Комптона». Теория была основана на идее Эйнштейна: квант света сталкивается с электроном по закону упругого удара. Применяя законы сохранения энергии и импульса, Комптон и Дебай получили формулу для изменения длины волны рассеянного излучения:

Дебай написал эту формулу в несколько измененном виде. Это простое и наглядное объяснение эффекта в сильной степени способствовало укреплению представления о кванте света как частице, для которой Комптоном был предложен термин «фотон», ставший общеупотребительным.

К 1924 г . в науке о свете создалось тягостное положение, которое очень наглядно охарактеризовал О. Д. Хвольсон. Разделив мелом доску на две части Л и В, он вписал на одной стороне факты, объясняемые волновой теорией света, на другой— факты, объясняемые квантовой теорией. «Ни волновая, ни квантовая теории, — говорил в связи с этим принимавший участие в съезде Эренфест,—не в состоянии охватить все области световых явлений». Всеобъемлющей теории света, как это констатировал Хвольсон, не было.

В поисках выхода из тяжелого положения авторы предложили даже отказаться от требования применения закона сохранения энергии к отдельным актам излучения и поглощения света атомом. Однако гипотеза Бора, Крамерса и Слэтера была опровергнута экспериментами, в которых доказывалось, что каждый акт взаимодействия света с веществом подчиняется закону сохранения энергии.

Идеи де Бройля

В 1923 г. в докладах Парижской Академии наук были опубликованы три статьи французского физика Луи де Бройля: «Волны и кванты», «Кванты света, дифракция и интерференция». «Кванты, кинетическая теория газов и принцип ферма», в которых выдвигалась совершенно новая идея, переносящая дуализм в теории света на сами частицы материи.

Он рассматривает некоторый волновой процесс, связанный с телом, движущимся со скоростью v = b с. Эта волна обладает частотой, определяемой соотношением E = h v = mc 2 , и движется в направлении движения тела со скоростью u = c b .

«Мы будем рассматривать ее лишь как фиктивную волну, связанную с перемещением движущегося тела». Де Бройль показывает далее, что для электрона, движущегося по замкнутой траектории с постоянной скоростью, меньшей скорости света, траектория будет устойчива, если на ней укладывается целое число таких волн. Условие это совпадает с квантовым условием Бора. Скорость частицы v = ре является скоростью группы волн, обладающих частотами, мало отличающимися друг от друга и соответствующими частоте — Эта волна, которую де Бройль называл «волной фазы», пилотирует движение частицы, несущей энергию те 2 , сама же фазовая волна энергии не несет. Гипотеза де Бройля позволяет «осуществить синтез волнового движения и квантов». Де Бройль утверждает наличие в природе волновых явлений и для частиц вещества. Он пишет: «Дифракционные явления обнаруживаются в потоке электронов, проходящих сквозь достаточно малые отверстия. Быть может, экспериментальное подтверждение наших идей следует искать в этом направлении ».

Де Бройль пишет, что его новая механика относится к прежней механике, классической и релятивистской, «так же как волновая оптика относится к геометрической». Он утверждает, что предложенный им синтез «представляется логическим венцом совместного развития динамики и оптики со времени XVII в.».

Открытие спина

Понятие спина было введено в физику Уленбеком и Гаудсмитом, работавшими летом 1925 г. у Эренфеста в Лейдене. К этому времени В. Паули опубликовал свою работу, содержащую формулировку принципа запрета, носящего его имя. Паули показал, что квантовое состояние электрона характеризуется четырьмя (а не тремя) квантовыми числами и что в этом состоянии может быть только один электрон. Статья Паули, содержащая формулировку его принципа, была опубликована весной 1925 г. Еще ранее Паули указал, что для характеристики состояния электрона необходимо четыре квантовых числа: главное квантовое число п, азимутальное квантовое число I и два магнитных числа т, и nif . Гаудсмит рассказал Уленбеку об этой работе Паули. Узнав это, Уленбек высказал такую мысль, что электрон обладает еще одной степенью свободы, которая соответствует вращению электрона (спину).

«После его замечания о спине,— писал Гаудсмит,— мы сразу увидели, что полностью выясняется, почему т, всегда равно +1/2 или —1/2. Далее мы увидели, что все случаи расщепления Зеемана могут быть объяснены, если приписать электрону магнитный момент, равный одному целому магнетону Бора. Кроме того, стало ясно, что спин находится в полном соответствии с нашим новым толкованием спектра водорода».

Статью Уленбека и Гаудсмита Эренфест немедленно отправил в « Die Naturwissenschaften », где она появилась в 1925 г. в 13-м номере журнала. Уленбек после консультации с Лоренцем выяснил, что скорость вращения электрона на экваторе для требуемого гипотезой момента должна быть больше скорости света, и потребовал возвращения статьи, но было уже поздно.

Статья Уленбека и Гаудсмита была очень неодобрительно встречена Паули. Еще ранее он отнесся отрицательно к аналогичной идее, высказанной Кронигом.

Большой интерес к новой гипотезе проявили Бор и Гейзенберг, а после того как Томас вычислил на основе гипотезы спина значение дублетного расщепления, Паули снял свои возражения.

Так, в 1925 г. появились квантовая механика Гейзенберга и Дирака, новая квантовая статистика Бозе— Эйнштейна, принцип Паули и гипотеза спина.

Нужен реферат, сочинение, конспект? Тогда сохрани - » Трудности теории бора . Готовые домашние задания!

Предыдущий реферат из данного раздела: Я ХОЧУ РАССКАЗАТЬ ВАМ О КНИГЕ Б. Л. ВАСИЛЬЕВА «А ЗОРИ ЗДЕСЬ ТИХИЕ»

Следующее сочинение из данной рубрики: Интерпретация периодического закона

Спасибо что посетили сайт Uznaem-kak.ru! Готовое сочинение на тему:
Трудности теории бора.