Применения ферритов

 Магнитомягкие ферриты с начальной магнитной проницаемостью 400 - 20000 в слабых полях во многих случаях эффективно заменяют листовые ферромагнитные материалы - пермаллой и электротехническую сталь. В средних и сильных магнитных полях замена листовых ферромагнетиков ферритами нецелесообразна, поскольку у ферритов меньше индукция насыщения.

            В табл.4 дана характеристика некоторых распространенных марок ферритов, выпускаемых в промышленном масштабе.

            Магнитомягкие ферриты широко применяются в качестве сердечников контурных катушек постоянной и переменной индуктивностей, фильтров в аппаратуре радио- и проводной связи, сердечников импульсных и широкополосных трансформаторов, трансформаторов развертки телевизоров, магнитных модуляторов и усилителей. Из них изготавливают также стержневые магнитные антенны, индуктивные линии задержки и другие детали и узлы электронной аппаратуры.

            Наиболее часто применяют ферритовые сердечники с замкнутой магнитной цепью. Такие магнитопроводы бывают либо монолитными, в виде единого тела (например, кольцевой сердечник), либо составными - из двух хорошо пришлифованных друг к другу частей, зазор между которыми по возможности мал. Составные магнитопроводы распространены шире монолитных, так как намотка проволоки на последние вызывает определенные трудности. В качестве примера на рис.4 показана конструкция составного сердечника закрытого (броневого) типа. Он состоит из двух одинаковых чашек и стержня-подстроечника, входящего в центральное отверстие. Перемещением подстроечника можно регулировать индуктивность катушки.

Марка m н (tg d / m н ) 10 6 при f, МГц m max H c ,

A/м

B r , Тл f кр , МГц f гр , МГц Т к , ° С (не ниже) r , Ом · м Примечание
20000НМ 15000 25(0,01) 35000 0,24 0,11 0,01 0,1 110 0,001  
6000НМ 4800-8000 40(0,02) 10000 8 0,11 0,02 0,5 130 0,1 Общее
1000НМ 800-1200 15(0,1) 1800 28 0,11 1,0 5 200 0.5  
1000НН 800-1200 85(0,1) 3000 24 0,1 0,4 3 110 10  
600НН 500-800 25(0,1) 1500 40 0,12 1,2 5 110 100  
2000НМ1 1700-2500 15(0,1) 3500 25 0,12 0,5 1,5 200 5 Термостабильн.
700НМ1 550-850 8(3) 1800 25 0,05 5 8 200 4 для аппаратуры
100ВЧ 80-120 135(18) 280 300 0,15 35 80 400 10 5 с повыш. требо-
20ВЧ2 16-24 280(30) 45 1000 0,1 120 300 450 10 6 ваниями
300НН 280-350 170(4) 600 80 0,13 5 20 120 10 6 Для конт. перес.
9ВЧ 9-13 850(150) 30 1500 0,06 250 600 500 10 7 подмагничиван.
200ВЧ 180-220 90(10) 360 70 0,11 20 - 360 10 3 Для широкопо-
50ВЧ3 45-65 120(30) 200 100 0,14 85 - 480 10 4 лосных трансф.

            Монокристаллы магнитомягких ферритов находят довольно широкое применение при изготовлении магнитных головок записи и воспроизведения звукового и видеодиапазонов в магнитофонах. По сравнениюс металлическими ферритовые головки обладают высоким удельным сопротивлением (что важно для уменьшения потерь) и большей твердостью. Из-за высокой скорости движения магнитной ленты при видеозаписи к материалу головки предъявляются повышенные требования в отношении износоустойчивости.

            Конструкция головки для магнитной записи показана на рис.5. Сердечник головки состоит из двух половин, склеенных стеклом, между которыми создается рабочий зазор 0,5-0,7 мкм. Такие сердечники изготавливают из монокристаллов марганец-цинковых ферритов, выращиваемых газоплазменным методом Вернейля.

            Современные устройства связи используют много деталей с ферритовыми сердечниками. Ферриты удовлетворяют серьезным требованиям, предъявляемым к современным элементам устройств связи, а также находят себе другие применения. Это, например, ферритовые антенны, однонаправленные изоляторы волноводов, модуляторы микроволн и т.д. Возможность изготовления ферритов различного состава увеличивает возможности их применения, благодаря чему ферриты перешагнули границы области применения, для которой они были первоначально разработаны, и стали применяться в технике ЭВМ, в технике регулирования измерений, а также в атомной технике.

3.2. Запоминающие и переключающиеся цепи

            Успехи в развитии магнитомягких материалов в 60-е годы содействовали быстрому развитию математических машин и позволили осуществить новые конструкции электронных телефонных станций. Элементы, в которых эти материалы используются совместно с полупроводниковыми диодами или транзисторами, почти вытеснили менее надежные, имеющие большие габариты и менее экономичные детали, какими являются электронные лампы и реле. При проектированиикрупных машин для обработки информации нельзя обойтись без этих элементов.

            Для указанных устройств обычно применяются металлические и ферритовые магнитные материалы с прямоугольной петлей гистерезиса. В некоторых запоминающих цепях, кроме этих материалов, применяются и другие.

3.3. Принципы действия запоминающих и переключающихся цепей с сердечниками с прямоугольной петлей гистерезиса

            Толчок развитию запоминающих устройств на основе магнитных материалов дали постоянно повышающиеся к ЭВМ. По принципу действия элементы запоминающих устройств делятся на две группы. Первые требуют постоянного обновления поступающей информации. Так работают запоминающие устройства, основанные на принципе линии задержки. Вторые длительно сохраняют записанную информацию. У магнитных запоминающих устройств этой группы носителем информации является остаточная индукция магнитного материала. Эти устройства также делятся на два типа. У первого магнитный материал перемещается относительно катушки, применяемой для записи или чтения. Информацию можно получить только в определенный момент, а именно тогда, когда запись проходит как раз под считывающей катушкой. У второго типа, т.е. статических устройств магнитной памяти и других подобных им усройств, запись и чтение производятся перемагничиванием неподвижного ферромагнитного материала. Информацию можно получить в любой момент времени. Запоминающие устройства осуществляют запись информации с помощью двух возможных состояний запоминающего элемента, чаще всего обозначаемых индексами 0 и 1.

            Магнитные переключающиеся цепи всегда имеют электрический выход, т.е. обмотку из провода с определенным сопротивлением. Переключение осуществляется изменением индуктивности или же изменением взаимосвязи у трансформатора, а поэтому может применяться только при переменном или импульсном напряжении и непригодно для постоянного тока.

            Чтобы обосновать требования к магнитным материалам этих цепей, опишем кратко работу матричного магнитного запоминающего устройства, матричного переключающего устройства и устройства магнитной памяти, основанного на принципе односердечникового магнитного усилителя, где чаще всего применяются ферритовые сердечники с прямоугольной петлей гистерезиса.

            Запись информации в статические устролйства магнитной памяти заключается в перемагничивании тороидального сердечника из одного состояния в обратное. Два возможных состояния запоминающего элемента требуют представления информвции в бинарном (двоичном) виде, а поэтому необходимо значительное количество сердечников. Металлические сердечники дороги и имеют большие размеры, а поэтому развитие запоминающих устройств большой емкости стало возможно лишь после появления ферритов с ППГ. Рассмотрим принцип действия устройства на одном сердечнике (рис. 6). Через записывающую обмотку А проходит положительный токовый импульс, который намагничивает сердечник до насыщения. После исчезновения импульса сердечник будет находиться в состоянии индукции В r , что соответствует записи 1. Состоянию 0 соответствует намагничивание в обратном направлении. Если теперь через обмотку В пройдет другой импульс отрицательной полярности, то сердечник перемагничивается из состояния 1 в состояние 0 и в выходной обмотке С индуцируется импульс напряжения. Если сердечник намагничен в отрицательном направлении, т.е. находится в состоянии 0, то считывающий импульс в обмотке В не вызовет перемагничивания сердечника.

Выходное напряжение в обмотке С будет незначительным. Основанные на этом принципе устройства памяти имеют тот недостаток, что при считывании снимается первоначальная запись и информацию необходимо снова записывать. Существенными достоинствами такого устройства являются доступность информации в любой момент, очень малое время записи (порядка наносекунд) и сохранение информации без потребления энергии.

Страницы: 1 2

Нужен реферат, сочинение, конспект? Тогда сохрани - » Применения ферритов . Готовые домашние задания!

Предыдущий реферат из данного раздела: Получение ферритов

Следующее сочинение из данной рубрики: Магнитные материалы специализированного назначения

Спасибо что посетили сайт Uznaem-kak.ru! Готовое сочинение на тему:
Применения ферритов.