Объём цилиндрического тела. Двойной интеграл

Цилиндрическим телом называется тело, ограниченное плоскостью Oxy, поверхностью, с которой любая прямая, параллельная оси Oz, пересекается не более чем в одной точке, и цилиндрической поверхностью, образующая которой параллельна оси Oz.

Область D, высекаемая в плоскости Oxy цилиндрической поверхностью, называется основанием цилиндрического тела (см. рис.1). В частных случаях боковая цилиндрическая поверхность может и отсутствовать; примером тому служит тело, ограниченное плоскостью Oxy и верхней полусферой .

Прежде всего напомним два принципа, из которых мы исходим при определении объёма тела:

1. если разбить тело на части, то его объём будет равен сумме объёмов всех частей;

2. объём прямого цилиндра, т.е. цилиндрического тела, ограниченного плоскостью, параллельной плоскости Oxy, равен площади основания, умноженной на высоту тела.

Пусть есть уравнение поверхности, ограничивающей цилиндрическое тело. Будем считать функцию непрерывной в области D и сначала предположим, что поверхность целиком лежит над плоскостью Oxy, т.е. что всюду в области D.

Рис. 2

Обозначим искомый объем цилиндрического тела через V, Разобьем основание цилиндрического тела - область D - на некоторое число n областей произвольной формы; будем называть их частичными областями. Пронумеровав частичные области в каком-нибудь порядке, обозначим их через а их площади - через . Через границу каждой частичной области проведем цилиндрическую поверхность с образующей, параллельной оси Oz. Эти цилиндрические поверхности разрежут поверхность на n кусков, соответствующих n частичным областям. Таким образом, цилиндрическое тело окажется разбитым на n частичных цилиндрических тел (см.рис.2). Выберем в каждой частичной области произвольную точку и заменим соответствующее частичное цилиндрическое тело прямым цилиндром с тем же основанием и высотой, равной . В результате получим n-ступенчатое тело, объем которого равен

Принимая объем V данного цилиндрического тела приближенно равным объему построенного n-ступенчатого тела, будем считать, что V n тем точнее выражает V, чем больше n и чем меньше каждая из частичных областей. Переходя к пределу при мы будем требовать, чтобы не только площадь каждой частичной области стремилась к нулю, но чтобы стремились к нулю все ее размеры. Если назвать диаметром области наибольшее расстояние между точками ее границы (Например, диаметр прямоугольника равен его диагонали, диаметр эллипса—его большой оси. Для круга приведенное определение диаметра равносильно обычному.), то высказанное требование будет означать, что каждый из диаметров частичных областей должен стремиться к нулю; при этом сами области будут стягиваться в точку (Если известно только, что площадь области стремится к нулю, то эта область может и не стягиваться в точку. Например, площадь прямоугольника с постоянным основанием и высотой, стремящейся к нулю, стремится к нулю, а прямоугольник стягивается к своему основанию, т. е. к отрезку).

В соответствии со сказанным мы принимаем искомый объем V равным пределу, к которому стремится Vn при стремлении к нулю наибольшего диаметра частичных областей (при этом):

 

К отысканию предела подобных сумм для функций двух переменных приводят самые разнообразные задачи, а не только задача об объеме.

Рассмотрим этот вопрос в общем виде. Пусть - любая функция двух переменных (не обязательно положительная), непрерывная в некоторой области D , ограниченной замкнутой линией. Разобьем область D на частичные, как указано выше, выберем в каждой частичной области по произвольной точке и составим сумму

(*)

где - значение функции в точке ; и , - площадь частичной области.

Сумма (*) называется n -й интегральной суммой для функции в области D , соответствующей данному разбиению этой области на n частичных областей.

Определение. Двойным интегралом от функции по области D называется предел, к которому стремится n-я интегральная сумма (*) при стремлении к нулю наибольшего диаметра частичных областей.

Записывается это так:

 

Читается: “двойной интеграл от на по области D”. Выражение , показывающее вид суммируемых слагаемых, называется подынтегральным выражением; функция называется подынтегральной функцией, - элементом площади, область D - областью интегрирования, наконец, переменные x и у называются переменными интегрирования.

Таким образом, можно сказать, что объем цилиндрического тела, ограниченного плоскостью Oxy , поверхностью и цилиндрической поверхностью с образующей, параллельной оси Oz , выражается двойным интегралом от функции , взятым по области, являющейся основанием цилиндрического тела:

.

Аналогично теореме существования обыкновенного интеграла имеет место следующая теорема.

Теорема существования двойного интеграла.

Если функция непрерывна в области D, ограниченной замкнутой линией, то её n-я интегральная сумма стремится к пределу при стремлении к нулю наибольшего диаметра частичных областей. Этот предел, т.е. двойной интеграл , не зависит от способа разбиения области D на частичные области и от выбора в них точек P i .

Двойной интеграл, разумеется, представляет собой число, зависящее только от подынтегральной функции и области интегрирования и вовсе не зависящее от обозначений переменных интегрирования, так что, например,

.

Далее мы убедимся а том, что вычисление двойного интеграла может быть произведено посредством двух обыкновенных интегрирований.

2.Вычисление двойных интегралов.

При вычислении двойного интеграла элемент площади нам удобно представить в ином виде. Будем разбивать область интегрирования D в плоскости Oxy на частичные области посредством двух систем координатных линий: x=const, y=const. Этими линиями служат прямые, параллельные соответственно оси Oy и оси Ox, а частичными областями - прямоугольники со сторонами, параллельными осям координат. Ясно, что площадь каждой частичной области будет равна произведению соответствующих и . Поэтому элемент площади мы запишем в виде т.е. элемент площади в декартовых координатах является произведением дифференциалов независимых переменных. Мы имеем

. (*)

При вычислении двойного интеграла (*) мы будем опираться на тот факт, что он выражает объём V цилиндрического тела с основанием D, ограниченного поверхностью . Напомним, что мы уже занимались задачей об объёме тела, когда рассматривали применения определённого интеграла к задачам геометрии и получили формулу

(**)

 

Рис.3

где S (х) - площадь поперечного сечения тела плоскостью, перпендикулярной к оси абсцисс, а и - уравнения плоскостей, ограничивающих тело. Применим теперь эту формулу к вычислению двойного интеграла

 

Предположим сначала, что область интегрирования D удовлетворяет следующему условию: любая прямая, параллельная оси Ox или Oy, пересекает границу области не более чем в двух точках. Соответствующее цилиндрическое тело изображено на рис.3

Область D заключим внутрь прямоугольника

 

стороны которого касаются границы области в точках А, В, С, Е. Интервал [а, b] является ортогональной проекцией области D на ось Ох, а интервал [c, d] - ортогональной проекцией области D на ось Oy. На рис.5 область D показана в плоскости Оху.

Точками A и C граница разбивается на две линии: ABC и AEC, каждая из которых пересекается с любой прямой, параллельной оси Oy, в одной точке. Поэтому, их уравнения можно записать в форме, разрешенной относительно y:

(ABC),

(AEC).

Аналогично точками В и Е граница разбивается на линии ВАЕ и ВСЕ, уравнения которых можно записать так:

(BAE),

(BCE).

 

Рис.5

Рассечем рассматриваемое цилиндрическое тело произвольной плоскостью, параллельной плоскости Oyz , т.е. x=const, (рис). В сечении мы получим криволинейную трапецию PMNR , площадь которой выражается интегралом от функции , рассматриваемой как функция одной переменной у, причем у изменяется от ординаты точки P до ординаты точки R. Точка P есть точка входа прямой х =const (в плоскости Оху) в область D , а R - точка ее выхода из этой области. Из уравнений линий АВС и АЕС следует, что ординаты этих точек при взятом х соответственно равны и .

Следовательно, интеграл

 

дает выражение для площади плоского сечения PMNR. Ясно, что величина этого интеграла зависит от выбранного значения х; другими словами, площадь рассматриваемого поперечного сечения является некоторой функцией от х, мы обозначим ее через S (х):

 

Согласно формуле (**) объем всего тела будет равен интегралу от S(x) в интервале изменения .( При выводе формулы (**) мы считали, что S(*) есть геометрическая площадь поперечного сечения. Поэтому дальнейшие рассуждения справедливы, строго говоря, лишь для случая . Основываясь на уточненном геометрическом смысле двойного интеграла, нетрудно доказать, на чем мы не будем останавливаться, что получающаяся формула для вычисления двойного интеграла будет верна для любых функций.

Заменяя в этой формуле S(x) её выражением, окончательно получим

 

или в более удобной форме

(А)

Пределы внутреннего интеграла переменные; они указывают границы изменения переменной интегрирования у при постоянном значении второго аргумента х. Пределы внешнего интеграла постоянны; они указывают границы, в которых может изменяться аргумент х.

Меняя роли х и у, т. е. рассматривая сечения тела плоскостями y=const , мы найдем сначала, что площадь Q(у) такого сечения равна , где у при интегрировании считается величиной постоянной. Интегрируя затем Q(у) в пределах изменения у, т. е. от c до d, мы придем ко второму выражению для двойного интеграла

(Б)

Здесь интегрирование совершается сначала по х, а потом по у.

.Формулы (А) и (Б) показывают, что вычисление двойного интеграла сводится к последовательному вычислению двух обыкновенных определенных интегралов; нужно только помнить, что во внутреннем интеграле одна из переменных принимается при интегрировании за постоянную. Для краткости правые части формул (А) и (Б) называют повторными (или двукратными) интегралами, а сам процесс расстановки пределов интегрирования - приведением двойного интеграла к повторному.

Формулы приведения двойного интеграла к повторному приобретают особенно простой вид, когда область D является прямоугольником со сторонами, параллельными осям координат (рис.6). В этом случае становятся постоянными пределы не только внешнего, но и внутреннего интегралов:

 

В других случаях для сведения двойного интеграла к повторному необходимо прежде всего построить область интегрирования; лучше всего изобразить эту область прямо в плоскости Оху, как это сделано на рис. Затем нужно установить порядок интегрирования, т. е. наметить, по какой переменной будет производиться внутреннее интегрирование, а по какой - внешнее, и расставить пределы интегрирования.

Поясним на примерах, как производится расстановка пределов интегрирования.

а) Примеры.

1) Приведем к повторному двойной интеграл если область D- треугольник,

 

Рис. 6. Рис. 7.

ограниченный прямыми y=0, y=x и х=а (рис.7). Если интегрировать сначала по у, а потом по х, то внутреннее интегрирование производится от линии у=0 до линии у=х, а внешнее - от точки х=0 до точки х=а. Поэтому

 

Меняя порядок интегрирования, получим

 

2) Приведем к повторному интеграл если область D ограничена линиями у=0, у=х 2 и х+у=2.

Область D, а также координаты крайних ее точек показаны на рис. 158. Вид области указывает на то, что удобнее интегрировать сначала по x, а потом по y:

 

Если изменим порядок интегрирования, то результат уже не удастся записать в виде одного повторного интеграла, так как линия OBA имеет на разных участках разные уравнения.

 

Рис.8

Разбивая область D на две : OBC и CBA, получим

 

 

Этот пример показывает, как важно с самого начала продумать порядок интегрирования.

Страницы: 1 2 3

Нужен реферат, сочинение, конспект? Тогда сохрани - » Объём цилиндрического тела. Двойной интеграл . Готовые домашние задания!

Предыдущий реферат из данного раздела: Понятие о кубатурных формулах

Следующее сочинение из данной рубрики: Равновесие и кинетика ионного обмена

Спасибо что посетили сайт Uznaem-kak.ru! Готовое сочинение на тему:
Объём цилиндрического тела. Двойной интеграл.




загрузка...