Математические конструкции как парадигмальные схемы

Начнем с нескольких примеров, заимствованных у Лейбница “Простота субстанции не препятствует множественности модификаций, которые должны совместно существовать в той же самой простой субстанции и состоять в разнообразии отношений к внешним вещам. Точно так же в центре, или точке, как она ни проста, находится бесконечное множество углов, образованных линиями, в ней встречающимися ” [15, с.404; курсив мой] (3)

“... случай совершенного равновесия химеричен: он никогда не встречается, так как универсум нельзя разрезать или разделить на две совершенно равные и схожие части. Универсум, как эллипс или другой подобный овал (имеется в виду: в отличие от эллипса или другого подобного овала - В.Ш.), нельзя разложить посредством проведенной через центр прямой линии на две совпадающие части . Универсум не имеет центра, и его части бесконечно разнообразны; следовательно, никогда не будет случая, когда все на обеих сторонах станет одинаковым и будет производить на нас равное влияние ...” [15, с.381; курсив мой]

“Но когда я все более сосредотачивал мысль, не давая ей блуждать в тумане трудностей, мне пришла в голову своеобразная аналогия между истинами и пропорциями , которая, осветив ярким светом, все удивительным образом разъяснила. Подобно тому как во всякой пропорции меньшее число включается в большее либо равное в равное , так и во всякой истине предикат присутствует в субъекте; как во всякой пропорции, которая существует между однородными (подобными) количествами (числами), может быть проведен некий анализ равных или совпадающих и меньшее может быть отнято от большего вычитанием из большего части, равной меньшему, и подобным же образом от вычтенного может быть отнят остаток и так далее, беспрерывно вплоть до бесконечности ; точно так и в анализе истин на место одного термина всегда подставляется равнозначный ему, так что предикат разлагается на те части, которые содержатся в субъекте. Но точно так же, как в пропорциях анализ когда-то все же исчерпывается и приходит к общей мере, которая своим повторением полностью определяет оба термина пропорции, а анализ иногда может быть продолжен в бесконечность, как бывает при сопоставлении рационального и мнимого числа или стороны и диагонали квадрата , аналогично этому истины иногда бывают доказуемыми, т.е. необходимыми, а иногда - произвольными либо случайными, которые никаким анализом не могут быть приведены к тождеству, т.е. как бы к общей мере. А это и является основным различием, существующим как для пропорций, так и для истин” [15, с.316; курсив мой] (4)

Эти три фрагмента, взятые из различных работ Лейбница, объединяет следующее: в контекст метафизического рассуждения вводятся математические фрагменты (мы выделяли их курсивом). При этом сам автор воспринимает их как “своеобразные аналогии” достаточно случайно связавшиеся в его мысли с метафизическим рассуждением. Например, еще в одном месте, Лейбниц пишет, что он мучительно размышлял “над тем, как можно совместить свободу и случайность с цепью причинной зависимости и провидением”. “Но тут вдруг - говорит он - блеснул мне некий невиданный и неожиданный свет, явившийся оттуда, откуда я менее всего ожидал его, - из математических наблюдений над природой бесконечного . Ведь для человеческого ума существует два наиболее запутанных вопроса (“два лабиринта”). Первый из них касается структуры непрерывного, или континуума, а второй - природы свободы, и возникают они из одного и того же бесконечного источника” [15, с.312-313; курсив мой]

Нетрудно увидеть связь между приведенными рассуждениями Лейбница и математическими мифами Платона и Николая Кузанского. Однако нетрудно заметить также и существенные отличия: во-первых, привлечение математики не является теперь осознанным, оправданным и систематически проводимым познавательным приемом; во-вторых, математические конструкции не обретают в этих рассуждениях особой жизни, они в готовом виде заимствуются из развитых независимо математических теорий. Здесь наблюдается как бы вырождение математического мифа, забвение им собственных корней. Внешне все как в математическом мифе, но исчезло измерение глубины, осталась лишь поверхность, утратившая свой смысл и неспособная к самостоятельной жизни и развитию

Теперь перед нами лишь аналогия или модель, единственный смысл которой - дать наглядное представление самим по себе мало наглядным метафизическим рассуждениям. Вплетенная в метафизический контекст математическая конструкция служит здесь образцом (парадигмой) для наглядного представления метафизических отношений, предлагает для них отчетливый образ. Желая отличить подобное приложение математики от математического мифа, мы будем называть соответствующие математические конструкции - парадигмальными схемами [33, с.67; 35, с.370]

Легко заметить, что между математическим мифом и использованием математических конструкций в роли парадигмальных схем невозможно провести отчетливой демаркационной линии . В каждом конкретном случае может возникать сомнение - что перед нами? Если правильные многогранники в “Тимее” Платона - скорее математический миф, чем парадигмальная схема, а геометрические и арифметические конструкции в текстах Лейбница - vice versa, то чем является “совершенно-круглый шар” в поэме Парменида [33, с.57-59] сказать уже затруднительно. При этом у одного и того же автора наряду с полноценными математическими мифами могут встречаться и вырожденные варианты - например, уже упомянутое выше пристрастие Платона к использованию конструкций геометрической пропорции и геометрического подобия, в качестве способов организации иерархии

Ситуация еще более осложняется тем, что недостаточная осознанность и продуманность связи между ходом метафизического рассуждения и привлекаемыми для его иллюстрации математическими аналогиями (как в случае Лейбница, лишь смутно догадывающегося о неслучайности являющихся его мысли метафизико-математических параллелей как следствии единства их “бесконечного источника”), часто приводит к тем большей неосознаваемой зависимости хода метафизического рассуждения от предстоящих мысли математических схем (как и получилось у Лейбница), иногда вплоть до подлинной математической экспансии [33, с.63-64]. Дело в том, что соответствующие математические конструкции вряд ли привносятся в метафизические рассуждения лишь post hoc, когда основной рисунок рассуждения уже сложился. Являясь на ранних стадиях формирования мысли, соответствующие математические конструкции не остаются пассивными. Наглядность этих конструкций, отчетливость математических образов, делает их, можно сказать, “навязчивыми”, определяя их активное влияние на те пути, которые избирает находящаяся в стадии становления метафизическая мысль

Тексты Лейбница были выбраны нами в качестве примера, конечно же, не случайно. Однако, не следует думать, что они единственны в своем роде, т.е. в том как используется в них математика. Использование математических конструкций в роли парадигмальных схем - широко распространенное явление, причем не только среди философствующих математиков, таких как Лейбниц и Г.Вейль [33, с.63-64], или мыслителей, получивших хорошее математическое образование, таких как П.Флоренский [33; 35] (5) , но и у весьма далеких от математики мыслителей - например, у Вл.Соловьева [28, с.3, 20], - хотя в последнем случае набор применяемых математических конструкций по понятным причинам значительно беднее

Еще более распространено применение разнообразных схем и диаграмм - диаграммы Эйлера-Венна, появившиеся в логике задолго до построений, связавших математическую логику и топологию; диаграммы, применяемые школой Г.П.Щедровицко- го, и язык картинок, развиваемый А.Г.Барабашевым [4]; диаграммы А.Белого [5] и т.п. Мы указали наиболее яркие примеры. Однако, всякое иллюстрирование рассуждения посредством наглядной схемы, составленной из “кружочков”, “прямоугольничков”, “стрелочек” и т.п. (см., например, рис.1 и 2 в настоящем тексте), стоит в легко заметном родстве с математическими конструкциями в роли парадигмальных схем, являясь еще более вырожденной версией математической мифологии [33, с.67-68]. Интересно, что и эти диаграммы и схемы обладают “навязчивостью” математических образов и способны вести за собой мысль (на что особо обращает внимание А.Г.Барабашев)

Нужен реферат, сочинение, конспект? Тогда сохрани - » Математические конструкции как парадигмальные схемы . Готовые домашние задания!

Предыдущий реферат из данного раздела: Математика как эстетический феномен и пангеометризм

Следующее сочинение из данной рубрики: МАТЕМАТИЧЕСКАЯ МИФОЛОГИЯ И ПАНГЕОМЕТРИЗМ

Спасибо что посетили сайт Uznaem-kak.ru! Готовое сочинение на тему:
Математические конструкции как парадигмальные схемы.




загрузка...