ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ

Пусть задана система векторов а 1 , а 2 , а 3 ,…,а л (1) одной размерности. Определение: система векторов (1) называется линейно-независимой, если равенство a 1 а 1 + a 2 а 2 +…+ a л а л =0 (2) выполняется лишь в том случае, когда все числа a 1 , a 2 ,…, a л =0 и ? R

Определение: система векторов (1) называется линейно-зависимой, если равенство (2) выполнимо хотя бы при одном a i ? 0 (i=1,…,k)

Свойства

1. Если система векторов содержит нулевой вектор, то она линейно зависима

2. Если система векторов содержит линейно-зависимую подсистему векторов, то она будет линейно-зависимой.

3. Если система векторов линейно-независима, то и любая ее подсистема будет линейно независимой.

4. Если система векторов содержит хотя бы один вектор, являющийся линейной комбинацией других векторов, то эта система векторов будет линейно зависимой.

Определение: два вектора называются коллинеарными, если они лежат на параллельных прямых

Определение: три вектора называются компланарными, если они лежат в параллельных плоскостях

Теорема: Если заданы два вектора a и b, причем а ? 0 и эти векторы коллинеарны, то найдется такое действительное число g , что b= g a

Теорема: Для того что бы два вектора были линейно-зависимы необходимо и достаточно, что бы они были коллениарны

Доказательство: достаточность. Т.к. векторы коллинеарны, то b= g a. Будем считать, что а,b ? 0 (если нет, то система линейно-зависима по 1 свойству). 1b- g a=0. Т.к. коэфф. При b ? 0, то система линейно зависима по определению. Необходимость. Пусть а и b линейно-зависимы. a а+ b b=0, a ? 0. а= -b/ a *b. а и b коллинеарны по определению умножения вектора на число

Теорема: для того, чтобы три вектора были линекно-зависимы необходимо и достаточно, чтобы они были компланарны. Необходимость

Дано: a, b, c – линейно-зависимы. Доказать: a, b, c – компланарны. Доказательство: т.к. векторы линейно-зависимы, то a а+ b b+ g c=0, g ? 0. с= - a / g *а - b / g *b. с-диагональ параллелограмма, поэтому a, b, c лежат в одной плоскости

БАЗИС СИСТЕМЫ ВЕКТОРОВ. РАЗЛИЧНЫЕ СИСТЕМЫ КООРДИНАТ

1. Определение: пусть задана некоторая система векторов. Базисом этой системы называется мах. совокупность линейно-независимых векторов системы

В множестве векторов на прямой базис состоит из одного ненулевого вектора

В качестве базиса множества векторов на плоскости можно взять произвольную пару

В множестве векторов в трехмерном пространстве базис состоит из трех некомпланарных векторов

2. Прямоугольная (декартова) система координат на плоскости определяется заданием двух взаимно перпендикулярных прямых с общим началом и одинаковой масштабной ед. на осях

Прямоугольная (декартова) система координат в пространстве определяется заданием трех взаимно перпендикулярных прямых с общей точкойпересечения и одинаковой масштабной ед. на осях

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

Определение: скалярным произведением двух векторов называется произведение длин двух векторов на косинус угла между ними

(а,b)=|a| |b| cos u, u<90, пр-е полож.; u=90, пр-е =0; u>90, пр-е отриц

Свойства:

1. (а,b)= (b,а)

2. ( a а,b)= a (а,b)

3. (а+b,с)= (а,с)+ (b,с)

4. (а,а)=|a| 2 – скал.квадрат.

Определение: два вектора называются ортоганальными, когда скалярное пр-е равно 0

Определение: вектор называется нормированным, если его скал.кв.равен 1

Определение: базис множества векторов называется ортонормированным, если все векторы базиса взаимно-ортагональны и каждый вектор нормирован

Теорема: Если векторы а и b заданы координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений соответствующих координат

Найдем формулу угла между векторами по определению скалярного произведения. cos u=a,b/|a||b|=x 1 x 2 +y 1 y 2 +z 1 z 2 /sqrt(x 1 2 +y 1 2 +z 1 2 )*sqrt(x 2 2 +y 2 2 +z 2 2 )

ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

Определение: векторным произведением двух векторов a и b обозначаемым [a,b] называется вектор с удовлетворяющий след. требованиям: 1. |c|=|a||b|sin u. 2. (с,а)=0 и (с,b)=0. 3. а, b, с образуют правую тройку

Свойства:

1. [a,b]= - [b,a]

2. [ a а,b]= a [а,b]

3. [a+b,c]=[a,c]+[b,c]

4. [a,a]=0

Теорема: Длина векторного произведения векторов равна площади параллелограмма построенного на этих векторах

Доказательство: справедливость теоремы вытекает из первого требования определения векторного произведения

Теорема: Пусть векторы а и b заданы координатами в ортонормированном базисе, тогда векторное произведение равно определителю третьего порядка в первой строке которого наход-ся базисны векторы, во второй – координаты первого вектора, в третьей – координаты второго

Определение: ортой вектора а называется вектор ед. длины имеющий одинаковое направление с вектором а. e a =a/|a|

РАЗЛИЧНЫЕ УРАВНЕНИЯ ПРЯМОЙ НА ПЛОСКОСТИ

1.Общее ур-е пр. 2. Ур-е пр. в отрезках. 3. Каноническое ур-е пр. 4. Ур-е пр. ч/з две точки. 5. Ур-е пр. с углов. коэфф. 6. Нормальное ур-е прямой. Расст. от точки до прямой. 7. Параметрическое ур-е пр. 8. Пучок пр. 9.Угол между пр

1. Ах+By+C=0 (1), где A, B одновр.не равны нулю.

Теорема: n(A,B) ортоганален прямой заданной ур-ем (1)

Доказательство: подставим коорд. т.М 0 в ур-е (1) и получим Ах 0 +By 0 +C=0 (1’). Вычтем (1)-(1’) получим А(х-х 0 )+B(y-y 0 )=0, n(A,B), М 0 М(х-х 0 , y-y 0 ). Слева в полученном равенстве записано скалярное произведение векторов, оно равно 0, значит n и M 0 M ортоганальны. Т.о. n ортоганлен прямой. Вектор n(A,B) называется нормальным вектором прямой

Замечание: пусть ур-я А 1 х+B 1 y+C 1 =0 и А 2 х+B 2 y+C 2 =0 определяют одну и ту же прямую, тогда найдется такое действительное число t, что А 1 =t*А 2 и т.д

Определение: если хотя бы один из коэффициентов в ур-ии (1) =0, то ур-е называется неполным

1. С=0, Ах+By=0 – проходит ч/з (0,0)

2. С=0, А=0, By=0, значит у=0

3. С=0, B=0, Ах=0, значит х=0

4. А=0, By+C=0, паралл. ОХ

5. B=0, Ах+C=0, паралл. OY

2. x/a+y/b=1.

Геом.смысл: прямая отсекает на осях координат отрезки а и b

3. x-x 1 /e=y-y 1 /m

Пусть на прямой задана точка и напр. вектор прямой (паралл.пр.). Возьмем на прямой произв. точки. q и M 1 М(х-х 1 ; y-y 1 )

4. x-x 1 /x 2 -x 1 =y-y 1 /y 2 -y 1

Пусть на прямой даны две точки М 1 (x 1 ;y 1 ) и М 2 (x 2 ;y 2 ). Т.к. на прямой заданы две точки, то задан направляющий вектор q(x 2 -x 1 ; y 2 -y 1 )

5. y=kb+b.

u – угол наклона прямой. Tg угла наклона называется угловым коэффициентом прямой k=tg u

Пусть прямая задана в каноническом виде. Найдем угловой коэффициент прямой tg u = m/e. Тогда видим x-x 1 /e/e=y-y 1 /m/e. y-y 1 =k(x-x 1 ) при y 1 -kx 1 =b, y=kx+b

6. xcos q +ysin q -P=0

q - угол между вектором ОР и положительным напр. оси ОХ

Задача: записать ур-е прямой , если изветны Р и q

Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cos q , sin q ). Пусть М(x,y) – произв.точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cos q x+sin q y. Приравняем правые части

Задача: прямая задана общим ур-ем. Перейти к норм. виду

Ах+By+C=0

xcos q +ysin q -P=0

т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности

Cos 2 q =(A*t) 2

Sin 2 q =(B*t) 2

-p=C*t

cos 2 q +sin 2 q =t 2 (A 2 +B 2 ), t 2 =1/A 2 +B 2 , t= ± sqrt(1/ A 2 +B 2 ). Sign t= - sign C

Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t

Аtх+Bty+Ct=0, t-нормирующий множитель

7. Система: x=et+x 1 и y=mt+y 1

НОРМАЛЬНОЕ УРАВНЕНИЕ ПРЯМОЙ. Расстояние от точки до прямой

1. xcos q +ysin q -P=0

q - угол между вектором ОР и положительным напр. оси ОХ

Задача: записать ур-е прямой , если изветны Р и q

Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cos q , sin q ). Пусть М(x,y) – произв.точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cos q x+sin q y. Приравняем правые части

Задача: прямая задана общим ур-ем. Перейти к норм. виду

Ах+By+C=0

xcos q +ysin q -P=0

т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности

Cos 2 q =(A*t) 2

Sin 2 q =(B*t) 2

-p=C*t

cos 2 q +sin 2 q =t 2 (A 2 +B 2 ), t 2 =1/A 2 +B 2 , t= ± sqrt(1/ A 2 +B 2 ). Sign t= - sign C

Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t

Аtх+Bty+Ct=0, t-нормирующий множитель

2. Обозначим d – расстояние от точки до прямой, а ч/з б – отклонение точки от прямой. б=d, если нач.коорд. и точка по разные стороны; = - d, если нач.коорд. и точка по одну сторону

Теорема: Пусть задано нормальное уравнение прямой xcos q +ysin q -P=0 и М 1 (x 1 ;y 1 ), тогда отклонение точки М 1 = x 1 cos q +y 1 sin q -P=0

Задача: найти расстояние от точки М 0 (x 0 ;y 0 ) до прямой Ах+By+C=0. Т.к. d=|б|, то формула расстояний принимает вид d=| x 0 cos q +y 0 sin q -P|. d=|Ах 0 +By 0 +C|/sqrt(A 2 +B 2 )

ПРЕОБРАЗОВАНИЕ ДЕКАРТОВЫХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ НА ПЛОСКОСТИ

Преобразование на плоскости есть применение преобразований параллельного переноса и поворота

Пусть две прямоугольные системы координат имеют общее начало. Рассмотрим все возможные скалярные произведения базисных векторов двумя способами:

(е 1 ;е 1 ’)=cos u

(е 1 ;е 2 ’)=cos (90+u)= -sin u

(е 2 ;е 1 ’)=cos (90-u)=sin u

(е 2 ;е 2 ’)=cos u

Базис рассматривается ортонормированный:

(е 1 ;е 1 ’)=(е 1 , a 11 е 1 + a 12 е 2 )= a 11

(е 1 ;е 2 ’)= (е 1 , a 21 е 1 + a 22 е 2 )= a 21

(е 2 ;е 1 ’)= a 12

(е 2 ;е 2 ’)= a 22

Приравниваем:

a 11 =cos u

a 21 = - sin u

a 12 =sin u

a 22 =cos u

Получаем:

x=a+x’cos u – y’sin u

y=b+x’sin u – y’cos u - формулы поворота системы координат на угол u

------------

x=a+x’

y=b+y’ - формулы параллельного переноса

Нужен реферат, сочинение, конспект? Тогда сохрани - » ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ . Готовые домашние задания!

Предыдущий реферат из данного раздела: КАКИЕ ГИПОТЕЗЫ МОЖНО ПРОВЕРЯТЬ С ПОМОЩЬЮ ДВУХВЫБОРОЧНОГО КРИТЕРИЯ ВИЛКОКСОНА?

Следующее сочинение из данной рубрики: Метод градиентного спуска

Спасибо что посетили сайт Uznaem-kak.ru! Готовое сочинение на тему:
ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ.