Что такое пульсары?

Самый далекий пульсар находится на расстоянии 1,3 кпк. Самый близкий пульсар отдален от Земли примерно на 60 пк (в десятки раз дальше, чем ближайшие звезды) , а самый далекий зафиксирован на расстоянии около 25 кпк, т.е. далеко за центром Галактики. Естественно предположить, что пульсары образуются и в других галактиках. Пока открыли по одному короткопериодическому пульсару в Большом и Малом Магеллановых Облаках. Девятнадцать пульсаров найдено в шаровых скоплениях/ Хотя по форме отдельные импульсы не вполне повторяют друг друга, период пульсара отличается высоким постоянством. Иногда импульсы пропадают, но после возобновления приема следуют в точности в прежнем ритме/ Впоследствии удалось записать отдельные импульсы с более высоким разрешением. При этом выяснилось, что они обладают еще более тонкой структурой, чем показано на рисунке 2. Рекордная быстрота изменения интенсивности составляет 0.8*105-60 секунды/ Это означает, что излучение исходит из области, не превышающей 250 метров в поперечнике

Уже в первый год после открытия пульсаров обнаружилось, что период многих из них постепенно увеличивается: со временем пульсары становятся "медленнее". Однако частота следования импульсов изменяется очень незначительно: чтобы период пульсара удвоился должно пройти примерно 10 млн. лет

Что же представляют собой пульсары? Находятся ли они вблизи Солнечной системы или также далеки от нас, как другие галактики? Легко видеть, что пульсары располагаются среди звезд нашего Млечного Пути. Мы уже знаем, что светлая полоса Млечного Пути, которую мы видим на небе, это множество звезд, расположенных в нашей Галактике. Особенно много звезд удается различить, если смотреть по направлению к центру Галактики. Если нанести на кар ту звездного неба все известные пульсары, то они окажутся распределенными среди звезд нашей галактики, преимущественно в районе Млечного Пути

Таким образом, пульсары распределены в пространстве так же, как и звезды: они равномерно размещаются среди звезд. Это значит, что проходит не одна тысяча лет, пока сигналы от нескольких пульсаров достигнут земных радиотелескопов. Соответственно, из лучения пульсаров должно иметь невероятную интенсивность, чтобы его, несмотря на гигантские расстояния, можно было зарегистрировать на Земле. И эта энергия исходит из области, диаметр которой не превышает 250 метров! Как только был открыт первый пульсар и его местонахождения на небесной сфере было точно определено, этот участок неба стали исследовать оптическими телескопами

Звезда, координаты которой попали в область, указанную радиоастрономами, оказалась самой обыкновенной. По всей видимости, она не имела ничего общего с приходящим по этому направлению радиоизлучением. Сам же пульсар оставался невидимым

Осенью 1968 года были обнаружены сигналы с периодом всего лишь 0.03 секунды от пульсара в Крабовидной туманности. Сигналы пульсара шли из облака, образованного остатками Сверхновой 1054 года, отмеченной в китайских и японских летописях. Нельзя ли отождествить с пульсаром какой-либо из звездноподобных объектов Крабовидной туманности?

Как же определить, является ли невидимая звезда источником пульсирующего радиоизлучения или нет? Быть может, оптическое излучение от звезды тоже пульсирует? Однако человеческий глаз неспособен заметить пульсации света от столь слабого источника

Не особенно выручает и фотографические методы: в том месте, где на фотопластинку попадает свет звезды она засвечивается вне зависимости от того, пульсирует попадающий на нее свет или нет

Поэтому, чтобы выявить пульсации видимого излучения звезды, приходится применят специальные методы. С телескопом соединяют телевизионную камеру, и оптическое изображение передается на два телеэкрана. Период импульсов радиоизлучения нам уже известен; в течение одной половины периода изображение поступает на экран А, а в течение другой половины - на экран В. Если видимое излучение объекта пульсирует в том же ритме, что и радиоизлучение, то может в принципе получиться так, что импульс будет всегда наблюдаться на экране А, а на экране В изображение поступает в те промежутки, когда импульса нет. Те источники, свет которых пульсирует с иной периодичностью, будут иметь на обоих эк ранах одинаковую яркость. Остается, таким образом, только сравнить изображения на двух экранах, чтобы выяснить, не изменяется ли видимая яркость какой-либо звезды с тем же периодом, что радиоизлучение

То, что пульсар в Крабовидной туманности видимая звезда удалось обнаружить описанным выше методом. Используемая аппаратура работала по аналогичному принципу, только исследовался не весь участок неба сразу, а каждая звезда по отдельности. Вместо того чтобы наблюдать звезду на нескольких телеэкранах, ее свет направляли поочередно на счетчики фотонов в соответствии с периодом пульсара Крабовидной туманности. Схема подобного измерения иллюстрируется на рис. 6. Если свет звезды не пульсирует, то все счетчики отмечают примерно одинаковое число световых квантов

Если же от звезды идут вспышки с той же периодичностью, что и у сигналов пульсара, то будут срабатывать те счетчики, которые задействованы в момент прихода светового импульса; остальные же датчики ничего не регистрируют. Таким образом, за достаточно долгое время показания счетчиков, на которые приходится "активная" доля периода, будут большими, а показания остальных счетчиков, в которые попадает лишь фоновый свет от темного ночного не ба, остаются почти на нуле. Как говорят, подобная система счетчиков "накапливает" импульс

В ноябре 1968 года два молодых астронома, Уильям Джон Кок и Майкл Дисней, решили провести три ночных дежурства на 90-санти метровом телескопе обсерватории Стюарда в Тусоне (штат Аризона) . Ни тот ни другой не имели еще опыта астрономических наблюдений, и они хотели воспользоваться ночными дежурствами, чтобы познакомиться с работой на телескопе. Они еще размышляли о том, что именно будут наблюдать, когда в начале декабря в журнале "Science" появилось сообщение об открытии пульсара в Крабовидной туманности. Это натолкнуло молодых астрономов на мысль попытаться обнаружить видимое излучение пульсара, тем более, что необходимая для этого электронная аппаратура уже имелась в институте

Дональд Тейлор построил эту аппаратуру для совершенно других целей и воспользовался ею как "приданым", чтобы быть включенным в группу наблюдателей. Итак, в отношении техники все было в порядке. И хотя никаких гарантий успеха не было - никому ведь еще не удавалось отождествить пульсар с видимой звездой, - Кок и Дисней имели возможность познакомиться с работой на телескопе, а Тейлор - испытать свои приборы

К началу января измерительная аппаратура была смонтирована на горе Китт-Пик (в 70 км от города Тусона) , и 11 января те лескоп был впервые направлен на Крабовидную туманность. Для каж дой звезды измерения проводились в течение 5000 периодов пульсара, причем за каждый период световой сигнал распределялся последовательно между несколькими счетчиками. Но ни одна звезда в исследованной области не давала накопления импульса на счетчиках, и 12 января Тейлор вернулся в Тусон. Помогать Коку и Диснею остался Роберт Мак-Каллистер, обслуживающий электронную аппаратуру. 12 января погода начала портиться, а результатов все не было. Еще две ночи, отведенные на это исследование, пропали из-за плохой погоды, и все предприятие, казалось, было обречено на неудачу

Как часто все решает случай! Уильям Тиффт - наблюдатель, чье дежурство начиналось с 15 января, уступил незадачливым новичкам ночи 15 и 16 января, чтобы они смогли вновь попытать счастья. Здесь предоставим слово самому Диснею

"Пятнадцатого днем было облачно, но к вечеру небо проясни лось. Мы начали ровно в 20 часов. Тейлор был еще в Тусоне; Кок и я сменяли друг друга у телескопа, а Мак-Каллистер работал с аппаратурой Тейлора. Для начала мы сделали замер от темного неба, в стороне от звезд. Для следующего измерения мы выбрали звезду, которую Вальтер Бааде обозначил как центральную звезду Крабовидной туманности. Всего тридцать секунд потребовалось для того, чтобы прибор показал нарастающее накопление импульса на счетчиках. Заметен был и слабый вторичный импульс, отстоящий от главного примерно на половину периода; он был значительно шире и не такой высокий. В то время как Мак-Каллистер продолжал спокойно обслуживать аппаратуру, мы с Коком поминутно переходили от истерического возбуждения к глубочайшей депрессии. Действительно ли это пульсар или просто какие-то ложные аппаратурные эффекты?

Ведь частота пульсара была в точности равна половине промышленной частоты переменного тока в США. Но при повторном измерении импульс вновь появился во всей своей красе, и настроение под куполом обсерватории поднялось

В 20.30, через полчаса после начала наблюдений, позвонил Тейлору. Он отнесся к моему сообщению скептически и предложил изменить кое-что в аппаратуре, чтобы устранить возможные ошибки

Лишь на следующую ночь, наблюдая своими глазами за накоплением импульса, он перестал сомневаться

В 1.22 появились облака. Наблюдения были окончены. У трех наблюдателей в обсерватории не было ни малейшего сомнения в том, что им посчастливилось открыть первый оптический пульсар"

Теперь и другие астрономы стали искать подтверждения открытия

После открытия пульсара в Крабовидной туманности стало ясно, что пульсары каким-то образом связаны со взрывами сверхновых

По-видимому, сигналы пульсары идут от того объекта, который ос тается на месте взрыва сверхновой. Это предположение подтверждается и другим пульсаром, излучение которого исходит из области, где наличие газовых масс указывает на происшедший ранее взрыв сверхновой. Этот взрыв, по всей вероятности, произошел очень давно, задолго до аналогичного события в Крабовидной туманности

В созвездии Паруса разлетающиеся газовые массы выглядят уже не как компактное пятно, а как отдельные "нити", имеющие большую протяженность. Период этого пульсара на 0,09 секунды больше периода пульсара в Крабовидной туманности. Это третий из самых быстрых известных пульсаров. (После открытия миллисекундных радиопульсаров его место 5-6) . С самого начала велся поиск этого объекта в видимой области спектра. Но успеха удалось добиться лишь в 1977 году: письмо, полученное 9 февраля редакцией журнала "Nature", в котором говорилось об отождествлении пульсара в созвездии Паруса с видимой звездой, было подписано двенадцатью авторами. Отметим, что наряду с этими двенадцатью учеными, работающими в Англии и Австралии, в предшествующие восемь лет многие астрономы на лучших телескопах мира занимались поисками видимой звезды, "мигающей" в том же ритме, что и пульсар в созвездии Па руса. Так что становится ясно, сколь масштабному всемирному бдению был объявлен отбой этой заметкой. Между прочим, Майкл Дисней, участвовавший в открытии оптического пульсара в Крабовидной туманности, входил и в эту группу ученых

У всех остальных пульсаров нет и следа излучения в видимой области. Это наводит на следующую мысль. Что бы ни представляли собой пульсары, они возникают в результате взрыва сверхновой

Вначале период пульсара мал - еще меньше, чем у пульсара в Крабовидной туманности. Такой пульсар излучает не только в радиодиапазоне, но и в видимой области спектра. С течением времени частота импульсов уменьшается. Не более чем за тысячу лет период пульсара становится равным периоду пульсара в Крабовидной туманности, а затем достигает и периода пульсара в созвездии Паруса

Наряду с увеличением периода ослабевает и интенсивность излучения в видимой области. Когда период пульсара превышает одну секунду, его оптическое излучение давно уже исчезло, и его удается обнаружить лишь по импульсам в радиодиапазоне. Поэтому с видимыми источниками отождествлены лишь два пульсара с самыми коротки ми периодами. Они относятся к самым молодым пульсарам, и вокруг них удается даже различить газовые облака - останки сверхновых

Более старые пульсары давно уже растратили свою способность излучать в видимой области

Но что же такое пульсары? Что остается, когда жизнь звезды заканчивается гигантским взрывом? Мы уже знаем, что пространственная область, из которой исходит излучение пульсара, должна быть очень малой. Какие же процессы могут происходить в столь малой области так быстро и с такой регулярностью, чтобы можно было привлечь их к объяснению феномена пульсара? Быть может, это звезды которые, подобно цефеидам, периодически "раздуваются" и вновь сжимаются? Но в таком случае плотность звездного вещества должна быть очень высокой, так как лишь тогда период осцилляций может быть достаточно мало (вспомним, что период изменения блеска цефеид составляет несколько суток) . Нас же интересуют объекты, которые способны осциллировать с периодом сотые доли секунды. Даже самые плотные из звезд, белые карлики, не способны совершать столь быстрые колебания. Возникает вопрос: могут ли звезды иметь еще более высокую плотность, оставляющие по плотности далеко позади белые карлики с их тонными на кубический сантиметр?

Первое соображение на этот счет высказали советский физик и два астронома из Пасадены задолго до обнаружения пульсаров. Лев Ландау (1908-1968) в 1932 году доказал, что вещество с еще более высокой плотностью может находиться в равновесии с гравитационными силами. Тогда же в Пасадене на самом большом по тем временам телескопе в мире работал выходец из Германии Вальтер Бааде

Страницы: 1 2

Нужен реферат, сочинение, конспект? Тогда сохрани - » Что такое пульсары? . Готовые домашние задания!

Предыдущий реферат из данного раздела: Действительно ли пульсары нетронные звезды

Следующее сочинение из данной рубрики: Открытие первого пульсара

Спасибо что посетили сайт Uznaem-kak.ru! Готовое сочинение на тему:
Что такое пульсары?.